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Stable Interpolation for the Yield Curve
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Abstract We study several interpolation schemes that are adequate for the yield curve construction, and pay atten-
tion to their stability under sequential and parallel perturbations. It is found that Hagan and West monotone convex
interpolation, tension splines and some monotone Hermite spline don’t always create stable yield curves. A specific
monotone Hermite spline interpolation is however stable.
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1. Introduction

1.1 Yield Curve Construction

Let P (t) denote the price of a zero coupon bond delivering for certain $1 at maturity t. The
continuously compounded yield is given by:

P (t) = exp(−y(t)t) (1)

The logarithm of the discount factor is:

z(t) = −y(t)t (2)

The instantaneous forward rate is:

f(t) =
∂

∂t
(y(t)t) (3)

A complete description of yield curve construction is given in Andersen and Piterbarg
(2010). Let Vi be the price of N securities. Typically, for a Libor curve, those securities are
Libor deposits for the first few months, Eurodollar futures for up to 3 or 4 years and par swaps
for the rest of the curve. We assume that the securities can be written as a linear combination
of discount bond prices:

Vi =

M∑
j=1

ci,jP (tj) , i = 1, ..., N (4)

with t1, ..., tM a finite set of dates, in practice corresponding to the cash flow dates of the N
benchmark securities.
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We will use a parameterization of the yield curve with N parameters, using the N equations
to solve the parameters, and limit our study to spline-like interpolators, the most common in
practice (Andersen and Piterbarg, 2010).

1.2 Yield Curve Risk

Let Π be a portfolio of securities. The yield curve risk is directly related to the estimation of
the the delta ∂Π

∂Vi
.

The simplest way to estimate the delta is the Par-Point approach where Vi is bumped
(often by bumping the corresponding yield by 1 basis point), the yield curve is then rebuilt,
and the portfolio repriced. A variation of the Par-Point approach uses cumulative shifts:
Π(V1+∆V1, ..., Vi+∆Vi, Vi+1, ..., VN )−Π(V1+∆V1, ..., Vi−1+∆Vi−1, Vi, Vi+1, ..., VN ) instead
of a single Par-Point shift. This has the advantage of preserving the parallel delta: the sum
of cumulative deltas is by construction the parallel delta, that is the delta following a parallel
shift of the benchmark securities. The cumulative shift is also somewhat more realistic.
An alternative is the forward rate approach where the forward curve is directly perturbated,

and the curve is therefore not rebuilt. The forward curve shift used in practice are often either
piecewise triangular or piecewise flat. The delta corresponding to a forward rate shift often
does not translate into a hedge quantity, unlike the Par-Point approach. But the hedge can
be recovered via the Jacobian method (Andersen and Piterbarg, 2010). Using this approach,
the interpolator has little role in the risk values, as the curve is not rebuilt.
It is common for banks to use both approaches at the same time. We focus our analysis

on the Par-Point approach for estimating the delta, not least because of the stress it puts on
interpolators.

1.3 Good Interpolation

Hagan and West have reviewed a wide range of interpolation schemes for the yield curve
construction (Hagan and West, 2006). They judge those according to the following criteria:

(a) Is the curve arbitrage free? The forwards must be positive.
(b) How good do the forward rates look? The forwards must be as continuous as possible.
(c) How local is the interpolation method? if an input is changed, the yield curve should

change only nearby, with minor spill-over elsewhere.
(d) Are the forwards stable? This is quantified by looking at the maximum basis point

change in the forward curve given some basis point change in one of the inputs.
(e) How local are the hedges? Most of the delta risk should be assigned to hedging instru-

ments with maturities close to the given tenor.

On top of those criteria, we add another stability criteria:

(f) Is the sequential delta close enough to the parallel delta? When the curve inputs are
shifted independently quote by quote by some basis point change, is the total price
change of a simple linear instrument the same as when the input quotes are shifted
together in parallel? This is important for the consistency of risk measures.

The standard linear interpolation on the log of discount factors (known as raw interpolation)
fulfill all the criteria except the continuity of the forwards (b). The standard cubic spline
fails criteria (a) and (e). With Hyman filtering it still fails (e), as does the more refined
monotonic spline interpolation of (Wolberg and Alfy, 1999). A Bessel spline on the log of
discount factors with Hyman filtering (Hyman, 1983) is found to be a potential candidate in
(Ametrano and Bianchetti, 2009). Finally, Andersen proposes hyperbolic tension splines to
smoothly manipulate locality and shape preservation (Andersen, 2005).
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2. Hagan and West monotone convex interpolation issues

2.1 The Forward monotone convex spline

Let’s recall Hagan and West monotone convex spline construction (Hagan and West, 2006).
Firstly, suitable discrete forward rates are computed according to the following procedure:

Let fd
i be the input forward rate at node i, the rate at point ti is defined for i = 1, 2, ..., n− 1

by:

fi =
ti − ti−1

ti+1 − ti−1
fd
i+1 +

ti+1 − ti
ti+1 − ti

fd
i (5)

f0 = fd
1 −

1

2
(f1 − fd

1 ) (6)

fn = fd
n −

1

2
(fn−1 − fd

n) (7)

Secondly, for i = 1, 2, ..., n, let g(t) = f(t) − fd
i and x(t) = t−ti−1

ti−ti−1
. The spline is defined for

x ∈ [0, 1] by:

g(x) = gi−1(1− 4x+ 3x2) + gi(−2x+ 3x2)

This definition makes 1
ti−ti−1

∫ ti
ti−1

f(t)dt = fd
i . Monotonicity of the forward rates is ensured

by analyzing the sign of g. There are 3 regions where g need to be fixed to force monotonicity.
We will focus our analysis on only one of them defined by gi−1 > 0, 0 > gi > −1

2gi−1 or gi−1 <

0, 0 < gi < −1
2gi−1 (called region (iii) in the authors paper), as well as the main region where

g is already monotonic gi−1 > 0,−1
2gi−1 ≥ gi ≥ −2gi−1 or gi−1 < 0,−1

2gi−1 ≤ gi ≤ −2gi−1

(called region (i) in the authors paper). In region (iii), monotonicity is ensured by making g
become:

g(x) =

gi + (gi−1 − gi)
(
η−x
η

)2
for 0 < x < η

gi for η ≤ x < 1
(8)

with η = 3 gi
gi−gi−1

to preserve the integral value. We can rewrite equation (8) as:

g(x) =

gi + (gi−1 − gi)
(
1− xgi−gi−1

3gi

)2
for 0 < x < η

gi for η ≤ x < 1
(9)

Finally, let’s define G as G′ = g.

G(x) = gix+ gi

(
1− x(gi − gi−1)

3gi

)3

for 0 < x < η (10)

2.2 Analytical Analysis

The stability criterion 1.3 can be measured by the change in discount factor following a change
of input quote. For a tenor t ∈ [ti−1, ti], the change in discount factor corresponds roughly
to the change in G following a change of input quote fd

i . We want the discount factor to
vary smoothly when fd

i is perturbated. The change in discount factor corresponds to the first

derivative of G on fd
i . For stability, we thus want the second derivative ∂2G

∂fd
i

2 to be bounded.

Let’s assume to simplify the problem that gi is perturbated directly, instead of fd
i . In reality,

both gi−1 and gi will be perturbated as a result of perturbating fd
i , but the conclusions would

be the same.
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We suppose that x < η and do a Taylor expansion of ∂2G
∂g2

i
in gi around 0.

∂2G

∂g2i
(x, gi) =

2

9g4i
g3i−1x

3 − 2

9g3i
g2i−1x

3 + o(g6i ) (11)

There are 2 cases:

(a) gi−1 ≫ gi (i.e. not around 0). As equation (11) is valid only for x ≤ η, x is at worst

proportional to gi. The first term will diverge as it is proportional to x3

g4
i
. However it

might not be that important in our case because G is evaluated from 0 to x, which is
a tiny interval.

(b) gi−1 ∼ gi. For example gi−1 = −4gi initially. gi−1 is fixed, while we perturb gi. η will
stay around a fixed value: in this example η = 3

5 . The first term will diverge because it

is of order
g3
i−1

g4
i
, x is not small anymore, it can be around η.

Hagan and West computed a similar stability criterion ( ∂f
∂fd

i
is bounded) but only for the

unconstrained spline in region (i), not globally. Even if they are careful to make g change
smoothly at the boundary between region (i) and region (iii), we have shown that it is not
enough and instability is possible when gi and gi−1 are small.

2.3 Numerical Results

Does the analytical instability manifests itself in the real world? Unfortunately the answer
is yes. We stumbled upon such a curve (Table 1). And it is that curve that led us to the
analytical analysis. The annoying part is that this curve is nothing special, it does not have
a forward approaching zero or a very strong convexity (see Figure 1). As a matter of fact, an
unconstrained Hermite spline would fit all stability criteria on this curve.

Table 1.: Input Quotes and corresponding discount factors found by a global optimizer using
raw interpolation.

(a)

Quote Type Value
Name

MM.USD.LIBOR.ON.T3750 Yield 0.205
MM.USD.LIBOR.TON.T3750 Yield 0.25

Future.USD.CME.EURODOLLAR.JUN.10 Future 99.6
Future.USD.CME.EURODOLLAR.SEP.10 Future 99.45
Future.USD.CME.EURODOLLAR.DEC.10 Future 99.205
Future.USD.CME.EURODOLLAR.MAR.11 Future 98.88
Future.USD.CME.EURODOLLAR.JUN.11 Future 98.52
Future.USD.CME.EURODOLLAR.SEP.11 Future 98.16

Swap.2Y.USD.LIBOR.6M/6M.T3750 Yield 1.2065
Swap.3Y.USD.LIBOR.6M/6M.T3750 Yield 1.796
Swap.5Y.USD.LIBOR.6M/6M.T3750 Yield 2.705
Swap.7Y.USD.LIBOR.6M/6M.T3750 Yield 3.28
Swap.10Y.USD.LIBOR.6M/6M.T3750 Yield 3.769

(b)

Term Discount Discrete
(Years) Factor Forward
0.008 0.999983 0.208%
0.011 0.999977 0.208%
0.378 0.998490 0.405%
0.625 0.997115 0.559%
0.871 0.995137 0.805%
1.126 0.992266 1.134%
1.375 0.988558 1.502%
1.641 0.983680 1.861%
2.022 0.976031 2.050%
3.019 0.947266 3.000%
5.014 0.872068 4.147%
7.025 0.790714 4.870%
10.019 0.678050 5.133%

We look at the sequential delta and parallel delta for a simple money market trade of
maturity 4.5 years (between our 3Y swap and 5Y swap). The sequential delta is computed by
shifting each one of the curve underlying quotes by 1 basis point independently and calculating
the price difference for our money market trade. The parallel delta is computed by shifting
the whole curve by 1 basis point and calculating the price difference for our money market
trade.
Table 2 shows that the sequential delta sum matches closely the parallel delta for all interpo-

lation schemes except Hagan-West Monotone-Convex. The Monotone-Convex delta difference
is around 12 times larger than expected. The main contributor to the error is the 5Y swap
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Figure 1.: 1-day forward curve

Table 2.: Sequential and Parallel delta for various curve interpolations corresponding to the
curve in Figure 1.

Tenor Monotone-Convex Linear Spline Hyman89-Bessel Harmonic
1D $(0.21) $(0.56) $(1.30) $(0.21) $(0.24)
M10 1.59 1.66 $(3.11) 1.6 1.61
U10 1 0.99 $(2.42) 1 1.03
Z10 0.9 0.79 $(2.87) 0.9 0.92
H11 0.77 0.66 $(3.06) 0.77 0.76
M11 0.59 0.48 $(2.88) 0.6 0.62
U11 0.36 0.28 $(5.14) 0.37 0.36
2Y 9.96 2.59 62.71 13.51 14.56
3Y $(66.59) $(67.30) $(109.81) $(72.55) $(78.04)
5Y $(480.54) $(391.27) $(446.42) $(451.32) $(439.21)
7Y 57.85 0 72.21 52.71 44.54
10Y 0.4 0 $(10.82) 0.16 0.15

Sequential Delta Sum $(473.92) $(451.68) $(452.91) $(452.46) $(452.94)
Parallel Delta $(453.93) $(453.14) $(454.02) $(453.94) $(453.94)

Delta Difference $(19.99) $1.46 $1.11 $1.48 $1.00

shift. When we interpolate the Monotone-Convex curve to find the discount factor at 4.5 year
and analyze the Hagan-West algorithm in details, it turns out that we are in region (iii) with:

gi−1 = −0.007687, gi = 0.003594, η = 0.95586

After a 1 basis point bump of the 5Y quote, we are still in region (iii) with

gi−1 = −0.007861, gi = 0.003325, η = 0.89169

The cubic spline interpolation sequential delta shows some spill over especially for the 10Y
swap as expected from a global method.

2.4 Problem Reduction

We have been analyzing the interpolation role in the full curve construction mechanism. But
the instability is actually only related to the interpolation of discount factors or forward rates.
Let’s analyse numerically only the interpolation part, independently of the curve construction.
Our input is now only the discount factors associated to each tenor, and we perturb the

corresponding yield directly. At any given date, we want to know if the sum of the sequentially
perturbated discount factors at this date is close to the discount factor obtained by shifting
the yields in parallel. This corresponds indeed to our previous simple money market delta
measure. If we had perturbated the discount factor directly, a parallel perturbation would
create a bias in the short tenors.
We also want to look at the second derivative of the yield over the input yields ∂2y

∂y2
i
(t). This
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Figure 2.: 1 basis point yield perturbation for the curve defined in Table 1

is a similar measure as the ∂2G
∂g2

i
(t) from equation 11.

Figure 2 shows that indeed, delta discrepancy and the second derivative of the yield are
closely related. The Monotone Convex scheme delta discrepancy can be much worse than our
previous example, up to 20% for a maturity between 1 and 2 years. Using a 5.9y maturity
instead of a 4.5y maturity for the analysis of section 2.3 would have resulted in a higher delta
discrepancy as well.
The log linear interpolation is the most stable one as expected, followed closely by the log

spline and the log Hyman89 Bessel spline.
The cumulative Par-Point approach would provide by construction a consistent parallel

delta. But it suffers from the same instability problems: the bucket delta varies a lot on a

small curve bump (whether it is cumulative or a single quote) when max(∂
2y

∂y2
i
(t)) is high, and

the hedge is not stable. In addition, a global interpolation like a standard cubic spline presents
similar spill-over.

3. Monotone Hermite Splines

3.1 Piecewise Cubic Interpolation

Given the data z(t0), z(t1), ..., z(tn) with t0 < t1 < ... < tn, a piecewise cubic interpolant p is
of the following form (De Boor, 2001), for i ∈ 0, ..., n− 1, for t ∈ [ti, ti+1],

p(t) = pi(t) = ci0 + ci1(t− ti) + ci2(t− ti)
2 + ci3(t− ti)

3 (12)

The interpolation conditions are:

pi(ti) = z(ti), p′i(ti) = si, i = 0, ..., n (13)

pi(ti+1) = z(ti+1), p′i(ti+1) = si+1, i = 0, ..., n− 1 (14)

where si are free parameters. Let

Di =
z(ti+1)− z(ti)

ti+1 − ti
(15)
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The interpolation conditions give:

ci0(ti) = z(ti) (16)

ci1 = si (17)

ci2 =
3Di − si+1 − 2si

ti+1 − ti
(18)

ci3 = −
2Di − si+1 − si
(ti+1 − ti)2

(19)

For local interpolation schemes, the si are chosen so that the ith cubic polynomial depends
only on information from, or near the interval [ti, ti+1]. While the si directly correspond to
the slope of the interpolation at ti, the Di are just used as a convenient notation. We will
later see that they actually have a financial interpretation.
Like Ametrano and Bianchetti (2009), we choose to interpolate on the logarithm of the

discount factors, instead of the rates as Hagan and West (2006): z(ti) = −y(ti)ti. This is
particularly interesting when the interpolation preserves monotonicity: the forward rates will
be guaranteed positive if the discount factors are decreasing.

3.2 Bessel spline with monotonic filter

In a Bessel spline, the si are chosen as the slope of the parabola interpolating the data at
three consecutive data-points. Its order of accuracy is O(δt2).

si =
(ti − ti−1)Di + (ti+1 − ti)Di−1

ti+1 − ti−1
(20)

The resulting interpolant is then of class C1, like Hagan-West interpolation. In practice, the
forward will have ”kinks” where the derivative is not continuous.

Hyman83 filter

Monotonicity can be ensured by applying some additional constraints on the si. Hyman
shows that monotonicity is preserved if the derivative is bounded in the DeBoor-Schwartz
region (Hyman, 1983):

si ←

{
min[max(0, si), 3min(|Di−1|, |Di|)] if si ≥ 0

max[min(0, si),−3min(|Di−1|, |Di|)] if si < 0, Di−1Di < 0
(21)

Hyman89 filter

Those conditions are relaxed in (Dougherty et al., 1989): let

m−1
i =

Di−1(2(ti − ti−1) + ti−1 − ti−2)−Di−2(ti − ti−1)

ti − ti−2
(22)

m0
i =

Di−1(ti+1 − ti) +Di(ti − ti−1)

ti+1 − ti−1
(23)

m1
i =

Di(2(ti+1 − ti) + ti+2 − ti+1)−Di+1(ti+1 − ti)

ti+2 − ti
(24)

Mi = 3min(|Di−1|, |Di|, |m0
i |, |m1

i |) (25)

If i > 2 and m0
i ,m

−1
i , (Di−1 − Di−2), (Di − Di−1) have the same sign, let Mi ←

max(Mi, 1.5min(|m0
i |, |m

−1
i |)). If i < n − 1 and −m0

i ,−m1
i , (Di − Di−1), (Di+1 − Di) have
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the same sign, let Mi ← max(Mi, 1.5min(|m0
i |, |m1

i |)). Then we replace si with the following:

si ←

{
sgn(si)min(|si|,Mi) if sgn(si) = sgn(m0

i )

0 otherwise
(26)

Applied on the log of the discount factors, the interpolation will preserve positivity of the
forwards. Hagan and West had found that the forward could be negative with Hyman83
filter, because they applied the interpolation directly to the rates instead of the log of the
discount factors. On their problematic curve, Ametrano and Bianchetti (2009) show that the
Hyman83 monotonic interpolant on the log of the discount factors produces positive forwards
as expected.

3.3 When monotonic filters break

All the previous monotonic filter share a common property: the first derivative is limited by
a min or max function in order to ensure monotonicity. Unfortunately, as min and max don’t
have a continuous derivative at the region switch, this means that in turns, our discount
factors have an exploding derivative at the switch, and our scheme is a priori not stable.
In order to illustrate this behavior, we modify slightly the previous curve so that it switches

region when the input is perturbated.

Table 3.: Input Quotes and corresponding discount factors found by the global optimizer
using raw interpolation.

(a)

Quote Type Value
Name

MM.USD.LIBOR.ON.T3750 Yield 0.205
MM.USD.LIBOR.TON.T3750 Yield 0.25

Future.USD.CME.EURODOLLAR.JUN.10 Future 99.6
Future.USD.CME.EURODOLLAR.SEP.10 Future 99.45
Future.USD.CME.EURODOLLAR.DEC.10 Future 99.205
Future.USD.CME.EURODOLLAR.MAR.11 Future 98.88
Future.USD.CME.EURODOLLAR.JUN.11 Future 98.52
Future.USD.CME.EURODOLLAR.SEP.11 Future 98.16

Swap.2Y.USD.LIBOR.6M/6M.T3750 Yield 1.2065
Swap.3Y.USD.LIBOR.6M/6M.T3750 Yield 1.796
Swap.5Y.USD.LIBOR.6M/6M.T3750 Yield 1.69
Swap.7Y.USD.LIBOR.6M/6M.T3750 Yield 3.28
Swap.10Y.USD.LIBOR.6M/6M.T3750 Yield 3.769

(b)

Term Discount Discrete
(Years) Factor Forward
0.008 0.999983 0.208%
0.011 0.999977 0.208%
0.378 0.998490 0.405%
0.625 0.997115 0.559%
0.871 0.995137 0.805%
1.126 0.992266 1.134%
1.375 0.988558 1.502%
1.641 0.983680 1.861%
2.022 0.976031 2.050%
3.019 0.947266 3.000%
5.014 0.919011 1.518%
7.025 0.787553 7.676%
10.019 0.674985 5.151%
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Figure 3.: 1-day forward curve
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Table 3 and Figure 3 illustrate the curve for Hyman89 monotonic filter. The only change
with the curve defined in Table 1 is the 5Y swap quote: we lowered it until the monotonic
filter became active. Like in section 2.4, we focus at the interpolation stability, perturbating
directly the yields.
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Figure 4.: 1 basis point yield perturbation for the curve defined in Table 3

Figure 4 shows that the sequential delta is very different from the parallel delta for the Bessel
spline with Hyman89 filter, the difference being more than 20 times than the one of the raw
interpolation. The Hyman83 filter will produce the same results on this curve as Hyman89.
In this case, Hagan-West Monotone Convex interpolation has consistent delta. Again, delta
discrepancy and the second derivative of the yield are closely related.
There are various alternatives in the same spirit as Hyman filtering: Steffen proposes a

stricter filter for the case of the Bessel spline (Steffen, 1990), and many other limiters are
reviewed in (Huynh, 1993). Similarly to the Hyman case, we have found curves producing a
large delta discrepancy for each of those involving a min or max function.

3.4 Harmonic spline to the rescue

Brodlie proposed to define si in equation (13) by a weighted harmonic mean (Fritsch and
Butland, 1984)1:

1

si
=

ti − ti−1 + 2(ti+1 − ti)

3(ti+1 − ti−1)

1

Di−1
+

2(ti − ti−1) + ti+1 − ti
3(ti+1 − ti−1)

1

Di
if Di−1Di > 0 (27)

This is mathematically equivalent to Fritsch PCHIM formulation part of Slatec Fortran li-
brary:

si =
min(|Di−1|, |Di|)

2(ti−ti−1)+ti+1−ti
3(ti+1−ti−1)

Di−1

max(|Di−1|,|Di|) +
ti−ti−1+2(ti+1−ti)

3(ti+1−ti−1)
Di

max(|Di−1|,|Di|)

if Di−1Di > 0 (28)

and si = 0 if Di−1Di ≤ 0.

1not to be confused with the sometimes called Fritsch-Butland algorithm presented in (Hyman, 1983) and available in
Quantlib
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The boundaries are defined by:

s0 =
2(t1 − t0) + (t2 − t1)

t2 − t0
D0 −

t1 − t0
t2 − t0

D1 (29)

sn = − tn − tn−1

tn − tn−2
Dn−2 +

2(tn − tn−1) + tn−1 − tn−2

tn − tn−2
Dn−1 (30)

and then filtered for monotonicity according to

s0 ←


3D0 if s0D0 > 0, D0D1 ≤ 0, |s0| < |3D0|
s0 else if s0D0 > 0

0 if s0D0 ≤ 0

(31)

sn ←


3Dn−1 if snDn−1 > 0, Dn−1Dn−2 ≤ 0, |sn| < |3Dn−1|
sn else if snDn−1 > 0

0 if snDn−1 ≤ 0

(32)

Except at the boundaries, this interpolation has continuous derivatives with regards to the
zi and will thus be stable for the use of yield curve interpolation on the log of the discount

factors, it is of class C1. There will be no big spike in ∂2y
∂y2

i
unlike Hyman filtering in Figure 4.

This is at the cost of a generally noisier second derivative, and as a consequence, the mean
relative delta error is higher on data where Hyman works well, like on Figure 2, but it remains
under 1%.
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Figure 5.: 1-day forward curve using Harmonic Spline interpolation

We take the example of a curve where all cubic interpolation methods studied in (Hagan
and West, 2006) produce negative forward rates, also studied in (Ametrano and Bianchetti,
2009). As seen on Figure 5 the Harmonic spline interpolation on the logarithm of the discount
factors does not produce negative forwards.

When ti − ti−1 = ti+1 − ti, letting r = Di

Di−1
, we have the following formula: si = Di

r+|r|
1+|r| .

This is the Van Leer limiter (Van Leer, 1974). Among the many limiters described in (Huynh,
1993), beside the Van Leer limiter, we have found one that does not rely on min or max
functions and behaves well on our tests curves. It relies on a rational function tailored to
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ensure continuity in the first derivative when Di = Di−1 and can be expressed as:

si =
3DiDi−1(Di +Di−1)

D2
i + 4DiDi−1 +D2

i−1

(33)

when DiDi−1 > 0 and si = 0 otherwise.
Like the harmonic mean, it produces a C1 stable interpolation and behaves very similarly

on our test curves.

3.5 Harmonic Forwards

There is an equivalence between Hagan-West approach of interpolating on discrete forwards
and an interpolation on the log of the discount factors: the Hagan-West interpolation with-
out any monotonicity and convexity constraints is a Bessel spline interpolation with specific
boundaries. Using z(ti) = −y(ti)ti in equation (15) and by the definition of a discrete forward
rate, we have:

fd
i+1 = −Di (34)

Equations (5) and (20) give

fi = −si (35)

The harmonic spline idea can be applied directly to the forwards by replacing the average
forward definition in Equation (5) with the following:

1

fi
=

ti − ti−1 + 2(ti+1 − ti)

3(ti+1 − ti−1)

1

fd
i

+
2(ti − ti−1) + ti+1 − ti

3(ti+1 − ti−1)

1

fd
i+1

if fd
i f

d
i+1 > 0 (36)

One can then just follow on and use Hagan-West algorithm without explicitly enforcing
any specific monotonicity and convexity constraints as, by construction, it will be already
monotonic. One advantage of following this approach is speed, another is a better sense of the
boundary conditions meaning as they directly relate to forward rates.

4. Tension Splines

Tension Splines are considered in (Andersen, 2005) to build a yield curve with control on
locality and convexity. They are also market standard for some curves: to build a designated
yield curve, SIFMA (Securities Industry and Financial Markets Association) defines the spread
adjustments using a C2 tension spline on the yields of designated bills and designated notes
(Securities Industry and Financial Markets Association, 2004).
There are several formulations for tension splines. The most common is the C2 hyperbolic

tension spline (Pruess, 1978) is defined as following. Given the data z(t0), z(t1), ..., z(tn) with
t0 < t1 < ... < tn, and a set of tension parameters ρ0, ρ1, ..., ρn−1, p is a tension spline
corresponding to this data and tension parameters if:

p(4) − ρ2i p
′′ = 0 in each [ti, ti+1] for i ∈ 0, ..., n− 1

p ∈ C2[t0, tn]

The interpolation conditions are:

p(t) = pi(t), t ∈ [ti, ti+1] (37)

pi(ti) = z(ti), i = 0, ..., n (38)

pi(ti+1) = z(ti+1), p′′i+1(ti) = p′′i (ti), i = 0, ..., n− 1 (39)
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The interpolant p is of the following form: for i ∈ 0, ..., n− 1, for t ∈ [ti, ti+1],

p(t) = pi(t) = pi(ti)λi(ti+1 − t) + pi+1(ti+1)λi(t− ti) + p′′i σi(ti+1 − t) + p′′i+1σi(t− ti) (40)

with

hi = ti+1 − ti (41)

λi(t) = t/hi (42)

σi(t) =
1

ρ2i

(
sinh(ρit)

sinh(ρih)
− λi(t)

)
(43)

p′′i = p′′(ti) (44)

and p′′i defined by the following tridiagonal system (continuity at p′′):

ci−1p
′′
i−1 + (bi−1 + bi)p

′′
i + cip

′′
i+1 =

pi+1(ti+1)− pi(xi)

hi
− pi(ti)− pi−1(ti−1)

ti−1
(45)

where

ci =
1

ρ2i

(
1

hi
− ρi

sinh(ρihi)

)
, (46)

bi =
1

ρ2i

(
ρi
cosh(ρihi)

sinh(ρihi)
− 1

hi

)
(47)

(48)

p′′0 and p′′n can be user defined. Setting them to 0 leads to the so called natural boundary
condition.

4.1 C1 Tension Splines

Renka extended the definition to C1 splines (Renka, 1987), allowing the user to give first
derivatives estimates at the knots. This can produce a local interpolation. But unfortunately,
the derivative estimates suffer from the same drawbacks as the hermite splines derivative
estimates. Renka suggests the use of derivatives estimates that preserve monotonicity. Hyman
filtering would produce the same sort of instabilities as in section 3.3. Furthermore the resulting
tension spline is very close to an ordinary Hermite spline, even when convexity is preserved
via Renka methodology. The C1 tension splines do not seem to offer any significant advantage.

4.2 C2 Tension

Let’s first consider the case of a uniform tension, as used for spread adjusments curves. How
do we select the tension parameter?
A natural choice for yield curve construction would be to start with a parameter that

preserves monotonicity and convexity using an algorithm like in (Pruess, 1978). This is how
we found our tension parameter for the curves in Figures 6 and 7. Figure 6 shows that a
tension spline interpolant preserving monotonicity and convexity creates a curve not too far
from a simple raw interpolation curve with our uniform tension definition.
If we simply scale the tension by ti+1−ti, the tension will become ρi

ti+1−ti
and the interpolant

will be independent of a scaling of the absissae (Renka, 1987). This creates a much smoother
curve (the “Scaled” curve in Figure 6). One has to be careful not to optimize the tension for
convexity and monotonicity everytime the curve is built, otherwise the curve is very unstable
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Figure 6.: 1-day forward curve using Tension Splines interpolation for the curve defined by
Table 3
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Figure 7.: 1 basis point yield perturbation for the curve defined in Table 3

under perturbation (Figure 7). This is where the use of tension spline can be problematic:
each time the tension parameter is updated, the risk measures can change a lot.
Many suggest the use of a different tension at each knot (Pruess, 1978; Renka, 1987; An-

dersen, 2005) (the “Varying” curve in Figure 6) . The stability issues will be more localised
if a few neighbouring tensions are changed instead of all tensions. But this makes even more
parameters to tweak. It is unclear how this can be done without an automatic procedure. And
still the delta will be unreliable when a tension is updated around this tension tenors.
If one optimizes only for convexity and monotonicity, the tension spline can be very close

to a regular cubic spline on some inputs, this is what happens on the curve defined in Table
1. The curve will be globally sensitive to perturbation and present just as much leaking as a
cubic spline. One should consider adding specific locality constraints. One possibility is the
use of cubic tension B-splines (Andersen, 2005).
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5. Conclusion

We have shown that Hagan and West monotone convex interpolation does not always pro-
duce a stable yield curve, especially under sequential shifts. Tension splines produce nice
looking yield curves. But those curves are very unstable when the tension parameters are
updated. Among Hermite splines, any monotonic limiter (e.g. Hyman) will produce unstable
yield curves. Only the Harmonic spline produces a stable local interpolation while preserv-
ing monotonicity and convexity of the discount factors. Furthermore as the Hagan and West
interpolation on discrete forward rates is equivalent to some Hermite spline interpolation on
the logarithm of the discount factors, the Harmonic spline approach can also be directly to
the forward rates, resulting in a potentially faster and more intuitive algorithm.
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Appendix A. Harmonic Spline in Scilab

Scilab, an open source software for numerical computation includes the PCHIM algorithm.
Here is an example of how to interpolate a given zero rates term structure with Scilab:

Listing 1: Scilab code for harmonic spline interpolation

terms = [0 . 011111 0.105556 0.269444 0.525000 0.775000 . .
1 .027778 1.544444 2.050000 3.063889 4.077778 . .
5 .086111 7.125000 10 . 1 6 3889 ] ;

z e r o r a t e s = [0 .0305947992 0.0308287918 0.0310541511 0.031233188 . .
0 .0323659069 0.0341521253 0.0394031712 0.0422235447 . .
0 .0493163764 0.0543568346 0.0575012361 0.0613722734 . .
0 . 0653758336 ] ;

l o gd f = −z e r o r a t e s .∗ terms ;
d = sp l i n ( terms , logd f , ” monotone ” ) ;
t = l i n s p a c e (0 , 10 , 101 ) ;
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[ z z1 ] = in t e rp ( t , terms , logd f , d , ” natura l ” ) ;
forward = −z1 ; // ins tantaneous forward
plot2d ( t , forward )


